Antimicrobial Coatings

What Are Antimicrobial Coatings?

Antimicrobial coatings are coatings that are treated with an antimicrobial agent and applied to a surface to prevent the growth of bacteria, mold, mildew or algae.

PVC, latex, polyurethane, ink, paint, lacquer, powder coatings, etc. are coated onto hard surfaces or textiles to create goods with new properties or features.  Regardless of their nature, most coatings are susceptible to bacterial, fungal and/or algal growth.

Microbial attack affects these coatings by producing bacterial or musty fungal odours, staining and/or loss of inherent properties.  This leads to a reduced lifespan of the product.  Antimicrobial coatings add value and functionality to finished products by reducing odours, staining and by extending product life.

What are the benefits of antimicrobial additives for coatings?

An antimicrobial coating offers proven protection from microbial attack by controlling growth of unwanted microbes. An antibacterial coating for plastic, for example, can enhance surfaces in healthcare institutions, catering facilities, washrooms and more by minimizing the presence of bacteria that cause odor generation and product degradation.

Antimicrobial additives for coatings can also offer protection against fungi, mould and mildew, a key feature particularly for outdoor applications.  An antimicrobial coating for plastic is especially beneficial.  It helps prolong the life of plastic materials by preventing discoloration, loss of tensile strength and cracking that often occurs through fungal attack.

What active ingredients are used to make antimicrobial coatings?

The most common actives used to manufacture antimicrobial coatings include various isothazolinone treatments, zinc pyrithione, silver and quaternary ammonium compounds. Each active ingredient has its strengths and weaknesses.

For example; zinc, silver and quats have strong antibacterial activity but their antifungal properties are either non-existent or high levels of the antimicrobial additive are required. Likewise, isothazolinones have a robust antifungal profile but are less effective against bacterial attack, or require more of the active to work effectively.

Synergistic combinations of different actives can lower overall anti-microbial use levels, provide economical savings and most importantly, deliver superior antimicrobial performance.

By creating unique combinations of antimicrobial actives, the Ultra-Fresh suite of antimicrobial additives for coatings offer something different compared to the “off-the-shelf” products sold by other antimicrobial companies. Ultra-Fresh antimicrobial additives are highly effective at lower use levels.   Since less product is used, the manufacturer’s overall costs are lowered.

Need assistance in choosing which antimicrobial additive(s) are best for coatings? We can help! Contact us for more info.

How is an antimicrobial coating made?

Simple to use, an antimicrobial treatment can be added to the liquid stage prior to coating. In most cases, antimicrobial additives can also offer excellent in-can protection prior to use.

A number of Ultra-Fresh treatment options for antimicrobial coatings are available. This selection ensures that an ideal product can be found for each particular end use and performance requirement.

How are antimicrobial coatings tested to make sure they work?

Many test methods developed by organizations such as the American Association of Textile Chemists and Colorists (AATCC); American Society for Testing and Materials (ASTM); International Organization for Standardization (ISO); and Japanese Industrial Standard (JIS) are available to evaluate antimicrobial performance of antimicrobial coatings.

Such standardized test methods are often developed for specific types of materials, end-uses or antimicrobial technologies; therefore choosing the correct test method is crucial.

Manufacturers looking to assess the antibacterial properties of their coatings should use the ISO 22196 (JIS Z 2801).

To test antifungal performance of coatings against mold and mildew, standardized anti-fungal test methods such as the AATCC Method 30, Part III or the ASTM G21 are recommended.

Can you see the difference an antimicrobial coating makes?

The photos below exemplify the benefit of antimicrobial additives for coatings. Under the right conditions, mold and mildew can flourish by breaking down coatings and using them as a food source, especially when moisture is present. Antimicrobial treatments prevent degradation and deterioration by providing anti-bacterial and anti-fungal protection.

The wood samples below, both with clear coatings applied, were tested using the AATCC Method 30, Part III. The test organism used was Aspergillus niger.  The sample with an untreated coating supports fungal growth – over time this causes micro cracks in the coating, leaving the wood exposed and prone to the effects of moisture, causing further staining and degradation.  The antimicrobial coating resists fungal growth, remaining strong and protected from the elements.

Ultra-Fresh antimicrobial coating
Antimicrobial coating for wood with Ultra-Fresh treatment resists fungal attack
Untreated wood coating
Untreated wood coating supports fungal growth









Where are antimicrobial coatings used?

Grand View Research estimates the global antimicrobial coatings market size was valued at USD 2.44 billion in 2015 and steady growth is predicted through till 2025.  Increasing concerns regarding cleanliness in various industries is contributing to the expanded use of antimicrobial coatings .  They are used in a variety of consumer and industrial applications that include:

  • Housewares
  • Commercial
  • Industrial
  • Outdoor
  • Building Products
  • Healthcare

Treatment options are available for virtually all end uses.  For more information on which Ultra-Fresh products are suitable for antimicrobial coatings, contact us!

Download Our PDF

Interested in learning more about our other antimicrobial applications:

Why Use Ultra-Fresh in Your Coatings

  • • Variety of coating treatments available
  • • Helps prevent discoloration and degradation
  • • Antibacterial & antifungal options offered
  • • Food contact options also available